##plugins.themes.academic_pro.article.main##

Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport

Abstract

Kemajuan dunia pariwisata dalam kehidupan zaman sekarang sudah sangat lazim ditemui di setiap negara di dunia. Meningkatkan kualitas pariwisata merupakan hal yang sangat penting bagi setiap negara, mengingat pariwisata merupakan salah satu sumber pemasukan negara. Oleh karena itu, salah satu parameter yang sangat penting akan hal ini adalah mengetahui jumlah pengunjung atau wisatawan setiap waktu, serta dapat memanfaatkan data historis yang ada untuk memprediksi jumlah wisatawan di waktu yang akan datang. Pada penelitian ini akan dilakukan prediksi/forecasting jumlah wisatawan dan penumpang di airport menggunakan metode Seasonal Auto Regressive Integrated Moving Average (SARIMA), Long-short Term Memory (LSTM), dan Prophet pada dua dataset time series dengan frekuensi bulanan. Dari tiga model forecasting tersebut, diperoleh hasil masing-masing lalu dikomparasi, model SARIMA merupakan model yang paling baik performanya dengan nilai RMSE dan MSE yang paling kecil.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
M. A. Ridla, N. Azise, and M. Rahman, “Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport”, simkom, vol. 8, no. 1, pp. 1-14, Jan. 2023.

References

J. L. Chen, G. Li, D. C. Wu, and S. Shen, “Forecasting Seasonal Tourism Demand Using a Multiseries Structural Time Series Method,” J. Travel Res., vol. 58, no. 1, pp. 92–103, 2019, doi: 10.1177/0047287517737191.

K. K. R. Samal, K. S. Babu, S. K. Das, and A. Acharaya, “Time series based air pollution forecasting using SARIMA and prophet model,” in ACM International Conference Proceeding Series, 2019, pp. 80–85. doi: 10.1145/3355402.3355417.

P. G. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” in Neurocomputing, 2003, vol. 50, pp. 159–175. doi: 10.1016/S0925-2312(01)00702-0.

D. Ömer Faruk, “A hybrid neural network and ARIMA model for water quality time series prediction,” Eng. Appl. Artif. Intell., vol. 23, no. 4, pp. 586–594, 2010, doi: 10.1016/j.engappai.2009.09.015.

K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting Across Time Series Databases using Recurrent Neural Networks on Groups of Similar Series: A Clustering Approach,” Expert Syst. Appl., vol. 140, Oct. 2019, doi: 10.1016/j.eswa.2019.112896.

A. Juliana, Hamidatun, and R. Muslima, Modern Forecasting Teori dan Aplikasi (GARCH, Artificial Neural Network, Neuro-Garch). Yogyakarta: Deepublish, 2019.

A. Cyril, R. H. Mulangi, and V. George, “Modelling and Forecasting Bus Passenger Demand using Time Series Method,” 2018 7th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2018, vol. 58, pp. 460–466, 2018, doi: 10.1109/ICRITO.2018.8748443.

M. Ekananda, Analisis Data Time Series, 1st ed. Jawa Barat: Mitra Wacana Media, 2014.

Z. Li, J. Bi, and Z. Li, “Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model,” 2017. doi: 10.1088/1755-1315/100/1/012146.

S. Noureen, S. Atique, V. Roy, and S. Bayne, “Analysis and application of seasonal ARIMA model in Energy Demand Forecasting: A case study of small scale agricultural load,” Midwest Symp. Circuits Syst., vol. 2019-Augus, pp. 521–524, 2019, doi: 10.1109/MWSCAS.2019.8885349.

P. Chen, A. Niu, D. Liu, W. Jiang, and B. Ma, “Time Series Forecasting of Temperatures using SARIMA: An Example from Nanjing,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 394, no. 5. doi: 10.1088/1757-899X/394/5/052024.

K. B. Tadesse and M. O. Dinka, “Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa,” J. Water L. Dev., vol. 35, no. 1, pp. 229–236, 2017, doi: 10.1515/jwld-2017-0088.

A. Soy Temür, M. Akgün, and G. Temür, “Predicting housing sales in turkey using arima, lstm and hybrid models,” J. Bus. Econ. Manag., vol. 20, no. 5, pp. 920–938, 2019, doi: 10.3846/jbem.2019.10190.

Z. Zhao, W. Chen, X. Wu, P. C. V. Chen, and J. Liu, “LSTM network: A deep learning approach for short-term traffic forecast,” IET Image Process., vol. 11, no. 1, pp. 68–75, 2017, doi: 10.1049/iet-its.2016.0208.

K. Chen, Y. Zhou, and F. Dai, “A LSTM-based method for stock returns prediction: A case study of China stock market,” in 2015 IEEE International Conference on Big Data (Big Data), Oct. 2015, pp. 2823–2824. doi: 10.1109/BigData.2015.7364089.

S. J. Taylor and B. Letham, “Forecasting at Scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, 2018, doi: 10.1080/00031305.2017.1380080.

E. Prasetyo, Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi, 2014.

L. Nashold and R. Krishnan, “Using LSTM and SARIMA Models to Forecast Cluster CPU Usage,” 2020.

S. Alkharif, K. Lee, and H. Kim, “Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources,” Lect. Notes Electr. Eng., vol. 461, pp. 221–229, 2018, doi: 10.1007/978-981-10-6520-0_23.