##plugins.themes.academic_pro.article.main##

Aspect-Based Sentiment Analysis Pada Aplikasi Pelacakan Kasus Covid-19 (Studi Kasus: Pedulilindungi)

Abstract

Berbagi pengalaman melalui internet dan media sosial dapat menunjukan sikap dan perasaan dalam bentuk umpan balik. Aplikasi publik yang banyak disoroti pada masa wabah corona virus yaitu aplikasi pedulilindungi yang merupakan aplikasi monitoring perkembangan Corona Virus Disease di Indonesia. Salah satu fenomena timbulnya Aspect-based sentiment dalam pada prilaku sentimentil masyarakat terhadap layanan aplikasi pedulilindungi. Penelitian ini bertujuan untuk mengetahui besarnya nilai sentimen pada layanan pedulilindungi dan berfokus pada aspect based sentiment analysis (ABSA) pada domain ulasan aplikasi pemerintah. Analisis terdiri dari user interface, user experience, fungsionalitas dan work scurity. Metode yang digunakan meliputi klasifikasi sentimen dan aspek dengan metode deep learning (CNN,GRU dan TCN). Data primer bersumber dari hasil ulasan aplikasi pedulilindungi dengan teknik scraping pada situs https://www.pedulilindungi.id/. Hasil penelitian menunjukan bahwa terdapat enam aspek klasisifikasi sentimen pada aplikasi pedulilindungi yaitu aplikasi, user interface, user experience, kode OTP, cek sertifikat vaksin, bukti akses layanan. Hasil penelitian juga menunjukan bahwa metode CNN memperoleh nilai skor akurasi terbaik pada klasifikasi sentimen sebesar 98% dan klasifikasi aspek sebesar 97%.

##plugins.themes.academic_pro.article.details##

How to Cite
[1]
S. Suryatin, D. H. Fudholi, C. K. Dewa, and N. Iman, “Aspect-Based Sentiment Analysis Pada Aplikasi Pelacakan Kasus Covid-19 (Studi Kasus: Pedulilindungi)”, simkom, vol. 9, no. 1, pp. 12-22, Jan. 2024.

References

Laskari, N. K., & Sanampudi, S. K. (2016). Aspect Based Sentiment Analysis Survey Deep Learning for NLP and IR View project Extraction of Events, Times from natural language text and mapping of the relations between them View project Aspect Based Sentiment Analysis Survey. 18(2), 24–28. https://doi.org/10.9790/0661-18212428

Huang, J., Meng, Y., Guo, F., Ji, H., & Han, J. (2020). Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding. https://github.

Arianto, D., & Budi, I. (2020). Aspect-based Sentiment Analysis on Indonesia’s Tourism Destinations Based on Google Maps User Code-Mixed Reviews (Study Case: Borobudur and Prambanan Temples). https://maps.google.com/localguides

Gu, S., Zhang, L., Hou, Y., & Song, Y. (2018). A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis.

D. Ekawati and M. L. Khodra, “aspect-based sentiment analysis for Indonesia restaurant reviews,” (2017. International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), 2017, pp, 1-6, doi:10.1109/ICAICTA.2017.8090963

Bhargav, J. (2019). Product Design Improvement System using Aspect Based Sentiment Analysis of Consumer Reviews Learning Interactions and Dynamics of Swarms View project Aspect Based Sentiment Analysis of Consumer Reviews View project. https://www.researchgate.net/publication/343726171

Dhabekar, S., & Patil, M. D. (2021). Implementation of Deep Learning Based Sentiment Classification and Product Aspect Analysis. ITM Web of Conferences, 40, 03032. https://doi.org/10.1051/itmconf/20214003032

Rizki Amalia, P., & Winarko, E. (2021). Aspect-Based Sentiment Analysis on Indonesian Restaurant Review Using a Combination of Convolutional Neural Network and Contextualized Word Embedding.

Axhiu, M., & Aliu, A. (2021). Semi-Supervised Aspect-Based Sentiment Analysis On Albanian Restaurant Reviews. In KNOWLEDGE-International Journal (Vol. 45, Issue 3).

Utama, I. P. A. M., Prasetyowati, S. S., & Sibaroni, Y. (2021). Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier. Jurnal Media Informatika Budidarma, 5(2), 630. https://doi.org/10.30865/mib.v5i2.2959

Parameswari, P. L., & Prihandoko. (2022). Penggunaan Convolutional Neural Network Untuk Analisis Sentimen Opini Lingkungan Hidup Kota Depok Di Twitter. Jurnal Ilmiah Teknologi Dan Rekayasa, 27(1), 29–42. https://doi.org/10.35760/tr.2022.v27i1.4671

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. http://arxiv.org/abs/1803.01271

Naquitasia, Risca & Fudholi, Dhomas & Iswari, Lizda. (2022). Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning. Jurnal Teknoinfo. 16. 156. 10.33365/jti.v16i2.1516.

Zhao, N., Gao, H., Wen, X., & Li, H. (2021). Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis. IEEE Access, 9, 15561–15569. https://doi.org/10.1109/ACCESS.2021.3052937

Siyam, B. Y. (2018). Deep Learning for Aspect-Based Sentiment Analysis of Government Mobile

Alqaryouti, O., Siyam, N., Monem, A. A., & Shaalan, K. (2019). Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2019.11.003

Ramdhani, M. A., Maylawati, D. S. adillah, & Mantoro, T. (2020). Indonesian news classification using convolutional neural network. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), 1000–1009. https://doi.org/10.11591/ijeecs.v19.i2.pp1000-1009

Hidayatullah, A. F., & Ma’Arif, M. R. (2017). Pre-processing Tasks in Indonesian Twitter Messages. Journal of Physics: Conference Series, 801(1). https://doi.org/10.1088/1742-6596/801/1/012072

Antonio, V. D. (2021) Analisis Kinerja Ekstraksi Fitur Tf-Idf (Term Frequency Inverse Document Frequency) untuk Algoritma Klasifikasi Stochastic Gradient Discent Pada Analisis Sentimen Teks Indonesia. https://repositori.usu.ac.id/handle/123456789/48179

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. http://arxiv.org/abs/1408.5882

Moch Ari Nasichuddin. (2017). Implementasi CNN untuk Klasifikasi Teks Menggunakan Tensorflow.

Biswas, S., Chadda, E., & Ahmad, F. (2015). Sentiment Analysis with Gated Recurrent Units. Advances in

Computer Science and Information Technology (ACSIT), 2(11), 59–63. http://www.krishisanskriti.org/acsit.html Long, J., Shelhamer, E., & Darrell, T. (2016). Fully Convolutional Networks for Semantic Segmentation.